Cellular DNA is subjected to damages by both exogenous and endogenous processes. Generally, human genome may undergo millions of damages per day. The changes in the genome cause errors in gene expression, producing proteins with altered structures. Proteins play a major role inside the cell by involving in cellular functions and cell signaling. Therefore, DNA damages may cause non-functional proteins that ultimately lead to cancers. In addition, the changes in the genome may pass to the next cell generation, becoming permanent changes known as mutations. Therefore, it is critical to repair DNA damages, and a number of cellular mechanisms are involved in this process. Some of these repair mechanisms include base excision repair, nucleotide excision repair, and double-strand break repair.
Key Areas Covered
1. What are DNA Damages
– Definition, Causes, Types
2. How Can Damaged DNA be Repaired
– Damage Repair Mechanisms
3. What Happens If DNA Damages are Not Repaired
– Cellular Responses for Damaged Cellular DNA
Key Terms: Direct Reversal of Bases, DNA Damage, Double-Strand Damage Repair, Endogenous Factors, Exogenous Factors, Single-Strand Damage Repair
What are DNA Damages
DNA damages are the alterations of the chemical structure of the DNA, including missing base from the DNA backbone, chemically-changed bases or double-strand breaks. Both environmental reasons (exogenous factors) and cellular sources such as internal metabolic processes (endogenous factors) cause damage to DNA. Broken DNA is shown in figure 1.
Figure 1: Broken DNA
Causes: Exogenous Factors
Exogenous factors can be either physical or chemical mutagens. The physical mutagens are mainly UV radiation that generates free radicals. Free radicals cause both single-strand and double-strand breaks. Chemical mutagens such as alkyl groups and nitrogen mustard compounds bind covalently to DNA bases.
Causes: Endogenous Factors
Biochemical reactions of the cell may also partially or completely digest the bases in DNA. Some of the biochemical reactions that change the chemical structure of DNA are described below.
- Depurination – Depurination is the spontaneous breakdown of purine bases from the DNA strand.
- Depyrimidination – Depyrimidination is the spontaneous breakdown of pyrimidine bases from the DNA strand.
- Deamination – Deamination refers to the loss of amine groups from adenine, guanine, and cytosine bases.
- DNA methylation – DNA methylation is the addition of an alkyl group to the cytosine base in the CpG sites. (Cytosine is followed by guanine).
How Can Damaged DNA be Repaired
Various types of cellular mechanisms are involved in the repair of DNA damages. DNA damage repair mechanisms occur in three levels; direct reversal, single-strand damage repair, and double-strand damage repair.
Direct Reversal
During direct reversal of DNA damages, most of the changes in the base pairs are chemically reversed. Some direct reversal mechanisms are described below.
Figure 2: Pyrimidine Dimers
Single-Strand Damage Repair
Single-strand damage repair is involved in the repair of damages in one of the DNA strand in the DNA double-strand. Base-excision repair and nucleotide excision repair are the two mechanisms involved in single-strand damage repair.
Figure 3: BER
Double-Strand Damage Repair
Double-strand damage may lead to rearrangement of the chromosomes. Non-homologous end joining (NHEJ) and homologous recombination are the two types of mechanisms involved in the double-strand damage repair. Double-strand damage repair mechanisms are shown in figure 4.
Figure 4: NHEJ and HR
What Happens If DNA Damages are Not Repaired
If the cells lose their ability to repair DNA damage, three types of cellular responses may occur in the cells with damaged cellular DNA.
Conclusion
Both exogenous and endogenous factors cause DNA damages that are readily repaired by cellular mechanisms. Three types of cellular mechanisms are involved in the DNA damage repair. They are the direct reversal of bases, single-strand damage repair, and double-strand damage repair.
Image Courtesy:
1. “Brokechromo” (CC BY-SA 3.0) via Commons Wikimedia
2. “DNA With cyclobutane pyrimidine dimer” By J3D3 – Own work (CC BY-SA 4.0) via Commons Wikimedia
3. “Dna repair base excersion en” By LadyofHats – (Public Domain) via Commons Wikimedia
4. “1756-8935-5-4-3-l” By Hannes Lans, Jurgen A Marteijn and Wim Vermeulen – BioMed Central (CC BY 2.0) via Commons Wikimedia
ncG1vNJzZmiolZm2oq2NnKamZ5ikxG6vwKdknZmdlrSmsIydpZplkpp6s7HPmqCrnZRk